electronics

stine

next week in Bucharest we'll be setting up the subjective frequency transducer for the third time. i described the sound/vibration generating part of this system before but didn't write much about how the controllers work.

so for each sound channel (i.e. each bass transducer) there's a wireless controller that enables the audience to set their preferred frequency. technically it's done with a rotary encoder, a esp8266 wifi module, a mega168 and a big 7-segment lcd. the circuit runs off two AAA batteries.

when someone touches the rotary encoder, the circuit wakes up and starts sending osc messages to a laptop running supercollider. supercollider receives the values, starts playing an oscillator and sends the sound to the corresponding audio channel. when done, sc fades out the oscillator and sends an off message to the circuit and the controller goes back to sleep mode.

i spent quite some time optimizing the microcontroller (atmega168) code. it was hard to both reduce power consumption and still being able to quickly wake up and react on user input as well as on incoming osc messages. it's a common problem with battery powered radio devices.

also getting the esp8266 to handle osc messages was a pain. here and here are some more info and simplified versions of that.

in the end, the code for talking to these circuits in supercollider looked like this:

//sc example: sending. turn off circuit 3 and set it back to initial frequency
~encode= {|id, on, hi, lo| (id&255<<24)|(on&255<<16)|(hi&255<<8)|(lo&255)};
~encode.value(3, 0, 0, ~initFreq);
//sc example: receiving. decoding data from the four esp8266
OSCdef(\sti, {|msg, time, addr|
        var id= msg[1]>>24;
        var onoff= (msg[1]>>16)&255;
        var freq= (msg[1]&65280)+(msg[1]&255);
        [\id, id, \onoff, onoff, \freq, freq].post;
}, \sti);

the microcontroller code could still be improved. i'd like it to wake up on both wdt and uart. at the moment the circuit is drawing 22mA average in off+idle state, and 33mA average with display set to '20' which is okey but not optimal. and when sending osc you get current spikes of a few hundred milliamps but there's no way around that.

//f.olofsson 2015-2016

#define ID 3
#define FREQ 0 //start frequency
#define FREQ_MIN 0
#define FREQ_MAX 9999
#define WLAN_SSID "MYNETWORK"
#define WLAN_PASS "MYPASSWORD"
#define WLAN_ADDR "192.168.43.99" //laptop static ip
#define WLAN_PORT 1112
String tag = "/tap"; //incomming osc addy

#include <avr/sleep.h>
#include <avr/power.h>
#include <avr/wdt.h>

#include <Encoder.h>

Encoder myEnc(3, 2);
float freq = FREQ;  //starting frequency
int freqLast = -999;

byte state = 0;
int enc = 0;
byte dig = 0;
byte cnt = 0;
boolean resp;

uint8_t buf[16];  //osc message

void setup() {
  pinMode(2, INPUT_PULLUP);  //encoder a
  pinMode(3, INPUT_PULLUP);  //encoder b
  pinMode(4, INPUT_PULLUP);  //encoder button
  DDRB = B11111111;  //segments
  DDRC = B00001111;  //digits selector

  //--set up wifi
  Serial.begin(115200);
  Serial.setTimeout(10000);
  resp = Serial.find("ready\r\n");
  progressDot(1);
  Serial.println("AT+CWMODE=1");
  resp = Serial.find("OK\r\n");
  progressDot(2);
  do {
    Serial.print("AT+CWJAP=\"");
    Serial.print(WLAN_SSID);
    Serial.print("\",\"");
    Serial.print(WLAN_PASS);
    Serial.println("\"");
    resp = Serial.find("OK\r\n");
  } while (!resp);
  progressDot(3);
  Serial.println("AT+CIPMUX=1");
  resp = Serial.find("OK\r\n");
  progressDot(4);
  Serial.print("AT+CIPSTART=4,\"UDP\",\"");
  Serial.print(WLAN_ADDR);
  Serial.print("\",57120,");  //supercollider default port
  Serial.print(WLAN_PORT);
  Serial.println(",0");
  resp = Serial.find("OK\r\n");
  Serial.setTimeout(1000);
  displayClear();

  //--osc message
  buf[0] = 47;   // /
  buf[1] = 115;  // s
  buf[2] = 116;  // t
  buf[3] = 105;  // i
  buf[4] = 0;
  buf[5] = 0;
  buf[6] = 0;
  buf[7] = 0;
  buf[8] = 44;   // ,
  buf[9] = 105;  // i
  buf[10] = 0;
  buf[11] = 0;
  buf[12] = ID;  // a high   (id)
  buf[13] = state; // a low  (onoff)
  buf[14] = 0;   // b high   (freq hi)
  buf[15] = 0;   // b low    (freq lo)

  //--timer
  noInterrupts();
  TCCR1A = 0;
  TCCR1B = 0;
  TCNT1 = 0;
  OCR1A = 32768;  //62.5Hz display updaterate
  TCCR1B |= (1 << WGM12);
  TCCR1B |= (1 << CS10);  //prescaler divide by 1
  TIMSK1 |= (1 << OCIE1A);
  interrupts();

  //--sleep
  MCUSR &= ~(1 << WDRF);
  WDTCSR |= (1 << WDCE) | (1 << WDE);
  WDTCSR = 1 << WDP0 | 1 << WDP1;
  WDTCSR |= _BV(WDIE);
}

volatile int f_wdt = 1; //watchdog wakeup
ISR(WDT_vect) {
  if (f_wdt == 0) {
    f_wdt = 1;
  }
}
void enterSleep(void) {
  set_sleep_mode(SLEEP_MODE_IDLE);
  sleep_enable();
  sleep_mode();
  sleep_disable();
  power_all_enable();
}

ISR(TIMER1_COMPA_vect) {  //update display periodically
  if (state == 2) {
    displayFreq();
  }
}

void sendOsc() {
  buf[13] = state;
  buf[14] = int(freq) >> 8;
  buf[15] = int(freq) & 255;
  Serial.println("AT+CIPSEND=4,16");
  Serial.find(">");
  Serial.write(buf, sizeof(buf));
  resp = Serial.find("OK\r\n");
}

void loop() {
  dig = 1 - ((PIND >> 4) & 1);  //encoder momentary button
  switch (state) {
    case 2:  //running (display on)
      enc = myEnc.read();
      if (enc != 0) {
        float incStep = enc / 2.0;
        myEnc.write(0);
        freq = max(FREQ_MIN, min(FREQ_MAX, freq + incStep));
        if (int(freq) != freqLast) {
          sendOsc();
          freqLast = int(freq);
        }
      }
      if (dig == 1) {  //TODO: or timeout here?
        state = 3;
      }
      break;
    case 0:  //sleeping (display off)
      f_wdt = 0;
      enterSleep();
      enc = myEnc.read();
      if ((dig == 1) || (enc != 0)) {
        state = 1;
        freq = FREQ; //reset
        sendOsc();
      }
      break;
    case 3:  //turning off when button released
      displayClear();
      if (dig == 0) {
        state = 0;
        sendOsc();
      }
      break;
    case 1:  //turning on when button released
      if ((dig == 0) || (enc != 0)) {
        state = 2;
        myEnc.write(0);
      }
  }

  //--receive osc
  while (Serial.available()) {
    String abc = Serial.readStringUntil('\n');
    if (abc.startsWith("+IPD,4,16:" + tag)) {
      //if(abc[22]==ID) { //optional filter by device ID
      if (abc[23] == 0) {
        displayClear();
        state = 0;
      } else {
        state = 2;
        myEnc.write(0);
      }
      freq = (abc[24] << 8) + abc[25];
    }
  }
}
void displayClear() {
  PORTC = B00001111;
  PORTB = B00000000;
}
void progressDot(byte index) {
  setChr(255, true);
  selDig(index);
}
void displayFreq() {
  int val = freq; //cuts off fraction
  switch (cnt) {
    case 0:
      if (val > 999) {
        setChr((val % 10000) / 1000, false);
      } else {
        setChr(255, false);
      }
      selDig(1);
      cnt = 1;
      break;
    case 1:
      if (val > 99) {
        setChr((val % 1000) / 100, false);
      } else {
        setChr(255, false);
      }
      selDig(2);
      cnt = 2;
      break;
    case 2:
      if (val > 9) {
        setChr((val % 100) / 10, false);
      } else {
        setChr(255, false);
      }
      selDig(3);
      cnt = 3;
      break;
    case 3:
      setChr(val % 10, false);
      selDig(4);
      cnt = 0;
  }
}

void selDig(byte index) {
  switch (index) {
    case 1:
      PORTC = B00001110;
      break;
    case 2:
      PORTC = B00001101;
      break;
    case 3:
      PORTC = B00001011;
      break;
    case 4:
      PORTC = B00000111;
  }
}

void setChr(byte chr, bool dot) {
  switch (chr) {
    case 255:  //clear
      PORTB = B00000000;
      break;
    case 0:
      PORTB = B11111100;
      break;
    case 1:
      PORTB = B01100000;
      break;
    case 2:
      PORTB = B11011010;
      break;
    case 3:
      PORTB = B11110010;
      break;
    case 4:
      PORTB = B01100110;
      break;
    case 5:
      PORTB = B10110110;
      break;
    case 6:
      PORTB = B10111110;
      break;
    case 7:
      PORTB = B11100000;
      break;
    case 8:
      PORTB = B11111110;
      break;
    case 9:
      PORTB = B11100110;
      break;
      /*
        case 10:  //A
        case 11:  //B
        case 12:  //C
        case 13:  //D
        case 14:  //E
        case 15:  //F
        case 16:  //G
        case 17:  //H
      */

  }
  if (dot) {
    PORTB |= B00000001;
  }
}

tamas

here another project. it's a box for replacing some old midi hardware. it can read 16 analog sensors, 16 digital sensors and control 16 leds via pwm. basically it is just a teensy plus a pwm breakout board from sparkfun. to easily access all the pins on the teensy, i also used the excellent Teensy 3.2 Breakout Board R3 by Daniel Gilbert.

attached are schematics, teensy code, and supercollider and maxmsp code for dealing with the serial communication.

tamas00

tamas01

update 161011: fixed a silly but severe error in the max patch

AttachmentSize
Binary Data TamasSerial.sc1.84 KB
Image icon tamas_teensy_schematics.png184.1 KB
Binary Data tamas_teensy.ino2.07 KB
Binary Data tamas_test.maxpat86.04 KB

mp3 speakers

for an upcoming installation we need a few speakers hanging on the walls playing back sound files in a loop. i found the dfplayer mini to work well. it's a small and cheap board that can play soundfiles from a sd-card and it has a built-in 3W amplifier. with a decent 5v batterybank (here 4400mAh) it can run for ~4 days continuously.

mp3speakers

esp8266 opensound control teensy

today i ported my opensound control esp8266 example for arduino to run on a teensy 3.1.

the version below is a bit simpler but still works the same. it is just to show how to send and receive osc messages directly in sc or max.

teensy code:

//f0 150705 - modified for teensy3 160430
//sending and receiving udp osc with an esp8266
//for teensy + esp8266 with firmare 0.9.5.2
#define WLAN_SSID  "ssid"
#define WLAN_PASS  "pass"
#define WLAN_ADDR  "192.168.1.3" //laptop running sc EDIT
#define ADDR "/tap" //incoming osc addy
#define PORT  1112  //incoming osc port
uint8_t buf[16];
char indata[12];
char inbuffer[256];
char OKrn[] = "OK\r\n";
byte wait_for_esp_response(int timeout, char* term = OKrn) {
  unsigned long t = millis();
  bool found = false;
  int i = 0;
  int len = strlen(term);
  while (millis() < t + timeout) {
    if (Serial1.available()) {
      inbuffer[i++] = Serial1.read();
      if (i >= len) {
        if (strncmp(inbuffer + i - len, term, len) == 0) {
          found = true;
          break;
        }
      }
    }
  }
  inbuffer[i] = 0;
  return found;
}
void setup() {
  //--osc message
  buf[0] = 47;   // /
  buf[1] = 115;  // s
  buf[2] = 116;  // t
  buf[3] = 105;  // i
  buf[4] = 0;
  buf[5] = 0;
  buf[6] = 0;
  buf[7] = 0;
  buf[8] = 44;   // ,
  buf[9] = 105;  // i
  buf[10] = 0;
  buf[11] = 0;
  buf[12] = 4;   // a
  buf[13] = 3;   // b
  buf[14] = 2;   // c
  buf[15] = 0;   // d
  pinMode(23, OUTPUT);
  Serial.begin(115200);   //usb serial for feedback
  delay(400);
  Serial1.begin(115200);  //teensy hardware pins 0 and 1
  Serial.println("starting");
  Serial.print("hard reset...");
  pinMode(4, OUTPUT);
  delay(10);
  pinMode(4, INPUT);
  Serial.print("ready...");
  boolean resp = wait_for_esp_response(1000, "ready\r\n");
  Serial.println(resp);
  Serial.print("mode1...");
  Serial1.println("AT+CWMODE=1");
  resp = wait_for_esp_response(1000);
  Serial.println(resp);
  Serial.print("connecting...");
  do {
    Serial1.print("AT+CWJAP=\"");
    Serial1.print(WLAN_SSID);
    Serial1.print("\",\"");
    Serial1.print(WLAN_PASS);
    Serial1.println("\"");
    resp = wait_for_esp_response(3000);
    Serial.print(resp);
  } while (!resp);
  Serial.print("\nmux1...");
  Serial1.println("AT+CIPMUX=1");
  resp = wait_for_esp_response(1000);
  Serial.println(resp);
  Serial.print("udp...");
  Serial1.print("AT+CIPSTART=4,\"UDP\",\"");
  Serial1.print(WLAN_ADDR);
  Serial1.print("\",57120,");
  Serial1.print(PORT);
  Serial1.println(",0");
  resp = wait_for_esp_response(1000);
  Serial.println(resp);
  Serial.println("setup done");
}
void loop() {
  if (wait_for_esp_response(1000, "\r\n+IPD,4,16:")) {
    if (wait_for_esp_response(1000, ADDR)) {
      Serial1.readBytes(indata, 12);
      if (wait_for_esp_response(1000)) {
        buf[12] = indata[8] + 1; //add one to incomming values
        buf[13] = indata[9] + 1;
        buf[14] = indata[10] + 1;
        buf[15] = indata[11] + 1;
        Serial.println(int(indata[8]));
        Serial.println(int(indata[9]));
        Serial.println(int(indata[10]));
        Serial.println(int(indata[11]));
        Serial1.println("AT+CIPSEND=4,16");
        if (wait_for_esp_response(1000, "> ")) {
          Serial1.write(buf, sizeof(buf));
          if (wait_for_esp_response(1000)) {
            Serial.println("reply sent!");
          }
        }
      }
    }
  }
}

supercollider code:

(
//--call&response
var send= 0, last= Main.elapsedTime;
OSCdef(\sti, {|msg, time, addr|
        //should receive the values you sent +1
        ([msg[1]>>24, (msg[1]>>16)&255, (msg[1]>>8)&255, msg[1]&255]).post;
        (" % sec since last: %, % sec since sent").format(addr, time-last, time-send).postln;
        last= time;
}, \sti);
n= NetAddr("192.168.1.4", 1112); //esp8266 ip address EDIT
f= {|id, on, hi, lo| (id&255<<24)|(on&255<<16)|(hi&255<<8)|(lo&255)};
r= Routine.run({
        inf.do{|i|
                n.sendMsg(\tap, f.value(4, 3, i.asInteger%256, 1));
                send= Main.elapsedTime;
                0.5.wait;
        };
});
)
AttachmentSize
Package icon maxmsp example patch1.56 KB

joule thieves

to make something useful out of 'dead' batteries i've been building joule thief circuits. these circuits are very easy, cheap and fun to build plus it gives me a little bit less bad conscious when going to the recycling bin with the batteries. watch https://www.youtube.com/watch?v=K53beWYdIpc to learn more.

below are pictures of one variant. it has a small 3mm green led (salvaged from broken printer), a hand wound coil, a resistor and a transistor.

joulethief 0

joulethief 1

the batteries here came with my first ever (analogue) multimeter. they are 32 years old!. see the date code: 84-04. they still can drive the little led. amazing. i think running this little green led is a good way to use the last energy stored in these beautiful and truly long life batteries.

joulethief 2

esp8266 opensound control

here some example arduino code for sending and receiving osc via the cheap esp8266 serial wifi module.

note that the opensound control messages here are very basic - only 4 bytes packed into a single 32bit integer.

* upload the code below to an arduino.

* connect esp8266 TX pin to arduino pin0.

* connect esp8299 RX to arduino pin1. it is safest to use a 3v3 lever converter for this line (or at least a voltage divider).

* power the esp8266 (VCC and GND) from an external 3v source. do not use the arduino 3v3pin as it cannot provide the required current. i used a LF33CV voltage regulator to get 3.3v from the 5v supply that also powers the arduino.

* connect esp8288 RESET pin to arduino pin4.

* and last connect esp8266 CH_PD to 3v3

optional: connect a separate usb-serial (ftdi) chip to arduino pins 2 and 3 to use software serial debugging. start debugging in terminal with something like screen /dev/tty.usbserial-A4015TKA 115200

the arduino code sits and waits for an incoming osc message (/tap). it then replies by sending out a counter message (/sti).

//f0 150705
//sending and receiving udp osc with an esp8266
//for an arduino + esp8266 with firmare 0.9.5.2

#include <SoftwareSerial.h>

#define WLAN_SSID  "SSID"
#define WLAN_PASS  "PASS"
#define WLAN_ADDR  "192.168.1.51" //laptop running sc
#define PORT  1112 //incoming osc port
String tag = "/tap"; //incoming osc addy

SoftwareSerial mySerial(2, 3);

uint8_t buf[16];
byte cnt;
byte id, on, hi, lo;
boolean resp;

void setup() {

  //--osc message
  buf[0] = 47;   // /
  buf[1] = 115;  // s
  buf[2] = 116;  // t
  buf[3] = 105;  // i
  buf[4] = 0;
  buf[5] = 0;
  buf[6] = 0;
  buf[7] = 0;
  buf[8] = 44;   // ,
  buf[9] = 105;  // i
  buf[10] = 0;
  buf[11] = 0;
  buf[12] = 4;   // a high   (id)
  buf[13] = 3;   // a low    (on)
  buf[14] = 2;   // b high   (hi)
  buf[15] = 0;   // b low    (lo)

  mySerial.begin(115200);
  Serial.begin(115200);
  Serial.setTimeout(10000);
  mySerial.println("");
  mySerial.println("starting");

  mySerial.print("hard reset...");
  digitalWrite(4, 0);
  pinMode(4, OUTPUT);
  delay(10);
  pinMode(4, INPUT);
  resp = Serial.find("ready\r\n");
  mySerial.println(resp);

  mySerial.print("mode1...");
  Serial.println("AT+CWMODE=1");
  resp = Serial.find("OK\r\n");
  mySerial.println(resp);

  mySerial.print("connecting...");
  do {
    Serial.print("AT+CWJAP=\"");
    Serial.print(WLAN_SSID);
    Serial.print("\",\"");
    Serial.print(WLAN_PASS);
    Serial.println("\"");
    resp = Serial.find("OK\r\n");
    mySerial.println(resp);
  } while (!resp);

  mySerial.print("mux1...");
  Serial.println("AT+CIPMUX=1");
  resp = Serial.find("OK\r\n");
  mySerial.println(resp);

  mySerial.print("udp...");
  Serial.print("AT+CIPSTART=4,\"UDP\",\"");
  Serial.print(WLAN_ADDR);
  Serial.print("\",57120,");
  Serial.print(PORT);
  Serial.println(",0");
  resp = Serial.find("OK\r\n");
  mySerial.println(resp);

  Serial.setTimeout(1000);
}
void loop() {
  while (Serial.available()) {
    String abc = Serial.readStringUntil('\n');
    if (abc.startsWith("+IPD,4,16:" + tag)) {
      id = abc[22];
      on = abc[23];
      hi = abc[24];
      lo = abc[25];
      mySerial.print("id:");
      mySerial.println(id);
      mySerial.print("on:");
      mySerial.println(on);
      mySerial.print("hi:");
      mySerial.println(hi);
      mySerial.print("lo:");
      mySerial.println(lo);

      buf[15] = cnt++;
      Serial.println("AT+CIPSEND=4,16");
      Serial.find(">");
      Serial.write(buf, sizeof(buf));
      resp = Serial.find("OK\r\n");
      mySerial.print("send...");
      mySerial.println(resp);
    }
  }
}

supercollider test code:

(
//--call&response
var last= Main.elapsedTime;
OSCFunc({|msg, time, addr|
        [\id, msg[1]>>24, \on, (msg[1]>>16)&255, \hi, (msg[1]>>8)&255, \lo, msg[1]&255, time-last, addr].postln;
        last= time;
}, \sti);
n= NetAddr("192.168.1.50", 1112); //esp8266 ip address
f= {|id, on, hi, lo| (id&255<<24)|(on&255<<16)|(hi&255<<8)|(lo&255)};
r= Routine.run({
        inf.do{|i|
                n.sendMsg(\tap, f.value(4, 1, i.asInteger>>8&255, i.asInteger%256));
                0.5.wait;
        };
});
)

bass!

for a project in collaboration with stine janvin motland i built this 4-channel transducer bass shaker system.

the system has four transducers (visaton bs 130, 4Ω), two class d stereo amplifiers (2x50w, tda7492 chip) and a powerful atx switching power supply (codecom pm-350c).

i modified the power supply to only give out 12v (yellow&black cables) and also made it start up automatically by shorting the green cable (ps-on) to ground (black).

transducers 1

transducers 2

there's no volume control so better take care - the system is very hot.

audioSerial

clean-up: #56

compared to generating a serial bitstream in audio, analyzing and extract serial data from audio is much harder. the supercollider code below does it, but the program has limitations and is quite sensitive for noise.

the code takes a string, chops it up into groups of six 8bit bytes and generates a serial audio bitstream from that. another part listens to this sound and tries to decode it. if it finds six full bytes it sends the result back to sclang via osc where it is printed.
to test the example connect an audio cable directly from your computer's output to its input (preferably via a small mixer), or change the audioSerial synthdef to use an internal audio bus. i can also imagine it could function with a mic next to the speakers - but i didn't test this.
if it only prints gibberish try with a different threshold setting, different volume on you computer or use a lower baud rate.

(
s.waitForBoot{
        var baudrate= 9600;
        SynthDef(\serialAudio, {|out= 0, amp= -0.5|                     //for sending out serial via audio
                var data= Control.names([\data]).kr(Array.fill(60, 0)); //max 6 bytes
                var src= Duty.ar(1/baudrate, 0, Dseq(data), 2);
                OffsetOut.ar(out, src*amp);
        }).add;
        SynthDef(\audioSerial, {|in= 0, thresh= 0.05|           //for receiving serial via audio
                var raw= 0-SoundIn.ar(in); //here change to In.ar if trying internal audio bus
                var src= raw>thresh;
                var reading= DelayC.ar(Trig1.ar(src, 1/baudrate*9), 1/baudrate/2, 1/baudrate/2);
                var osc= Phasor.ar(reading, baudrate/SampleRate.ir);
                var clock= (osc-Delay1.ar(osc))<0+Impulse.ar(0);
                var index= PulseCount.ar(clock, reading);
                var stopTrig= index>7;
                var data= Latch.ar(src, index>=#[7, 6, 5, 4, 3, 2, 1]);
                var byte= (1-data).sum{|x, i| 2**(6-i)*x};
                SendReply.ar(stopTrig, '/data', byte);
                DC.ar(0);
        }).add;
        OSCFunc({|msg| msg[3].asInteger.asAscii.post}, '/data');
        s.sync;
        Synth(\audioSerial);
};
)

(
var str= "hello supercollider!";
var baudrate= 9600;
fork{
        1.wait;
        str.ascii.clump(6).do{|bytes|
                var data= bytes.collect{|x| [1]++(1-x.asBinaryDigits.reverse)++[0]}.flat;
                s.bind{
                        Synth(\serialAudio, [\data, data]);
                };
                (1/baudrate*60+0.005).wait;
        };
};
)

one can use this technique to communicate with another computer via audio. to communicate with a microcontroller (e.g. an arduino), one needs additional electronics (amplification, rectification). here's schematics for a bi-directional circuit for talking to a 5v arduino.

this audio-to-serial technique was used to get input from rfid, touch and bend sensors in our reflect installation. i.e. sc is running on an ipod touch and receives all sensor data via audio from an atmega168 microcontroller.

Pages

Subscribe to RSS - electronics