After many years I finally got around to rebuild one of these boxes.
So this old Soviet-made device is now a wireless controller that send out OSC. There are in total 34 buttons, 16 knobs and an additional RGB status led. It automatically connects via WiFi to MaxMSP or SuperCollider and runs on 5V (USB power bank).
This box can drive eight speakers (3 Watt each) and play sound files independently from eight micro SD cards (MP3 or Wav). An Arduino Nano is programmed to do sequencing, randomise playback, control volume and set equaliser settings. It all runs on a single 9-12V power supply.
Very cheap to build. The biggest cost is all the SD cards.
To send commands out to all eight MP3 players, I'm bit banging 9600 baud serial data out on eight digital pins.
Here is another project built around the ESP8266. It's a wireless OSC controlled 100W led. As the led should act as a stroboscope and not be kept on for long durations of time, I could save space and cost using a smaller sized heatsink. Via WiFi and OSC (Open Sound Control) the led can be turned on/off, the level, attack and release times adjusted etc. There is also a push-button trigger input as well as a microphone input. So the strobe can be either triggered manually by the musician, by the sound of the nearby instrument or remotely by a computer.
The strobe also sends out OSC data from the button and mic so it can, in turn, be used to trigger additional sounds in the computer.
Here is how I build super cheap wireless OSC controlled RGB led strips. The main components for these are an ESP8266, a 5V power bank, a voltage regulator and some LEDs. The LEDs I've used so far are the SK6812 RGBW, but it is easy to adapt the Arduino code to work with other models like the WS2812B.
A basic version of the Arduino code shown here below. When it starts it creates a soft access point. Connect to it with a computer or phone, figure out the IP address of the ESP8266 and start sending OSC commands to it.
// * install OSC from https://github.com/CNMAT/OSC
// * install Adafruit_NeoPixel from library manager
// * edit where it says EDIT below
// * choose board: "Generic ESP8266 Module"
// * upload and connect to softap with laptop
// * try to send OSC messages to ip 192.168.4.1 port 19999
//protocol: [\rgbw, index, red, green, blue, white] example red: [\rgbw, 0, 255, 0, 0, 0]
#include <ESP8266WiFi.h>
#include <WiFiUdp.h>
#include <OSCMessage.h>
#include <OSCData.h>
#include <Adafruit_NeoPixel.h>
#define PORT 19999
#define NUMNEO 12 //EDIT number of neo pixels in use
#define PINNEO 2
const char *ssid = "f0neo"; //EDIT softAccessPoint network name
const char *password = "mypass123"; //EDIT password
WiFiUDP Udp;
//EDIT to match type of LEDs (see example/Adafruit_NeoPixel/strandtest)
Adafruit_NeoPixel pixels = Adafruit_NeoPixel(NUMNEO, PINNEO, NEO_RGBW + NEO_KHZ800);
void setup() {
pixels.begin();
pixels.show();
WiFi.mode(WIFI_AP);
WiFi.softAP(ssid, password);
Udp.begin(PORT);
}
void rgbw(OSCMessage &msg) {
pixels.setPixelColor(msg.getInt(0), msg.getInt(2), msg.getInt(1), msg.getInt(3), msg.getInt(4));
pixels.show();
}
void loop() {
OSCMessage oscMsg;
int packetSize = Udp.parsePacket();
if (packetSize) {
while (packetSize--) {
oscMsg.fill(Udp.read());
}
if (!oscMsg.hasError()) {
oscMsg.dispatch("/rgbw", rgbw);
}
}
}
Attached (zip file) are more elaborate versions of this code - also including MaxMSPJitter and SuperCollider examples and KiCad schematics.
Here is how I built a wireless isolated DMX controller that takes OSC input. The box uses an ESP8266 to create a WiFi access point that one can connect to with a laptop (or phone or whatever). Open Sound Control messages sent to the box are converted into standard DMX commands. Multiple clients can be connected and send DMX commands at the same time.
Below is Arduino code for the ESP8266, Bill-Of-Material, the KiCad schematics and some SuperCollider test code.
// * install OSC from https://github.com/CNMAT/OSC
// * install WiFiManager from https://github.com/tzapu/WiFiManager
// * install LXESP8266UARTDMX from https://github.com/claudeheintz/LXESP8266DMX
// * select board: "Generic ESP8266 Module" 160 MHz
#include <ESP8266WiFi.h>
#include <DNSServer.h>
#include <ESP8266WebServer.h>
#include <ESP8266mDNS.h>
#include <Ticker.h>
#include <WiFiManager.h>
#include <WiFiUdp.h>
#include <OSCMessage.h>
#include <OSCData.h>
#include <LXESP8266UARTDMX.h>
#define CONFIG_PIN 0 //GPIO0 to GND to reset WiFi
#define PORT 19998 //EDIT OSC input port
#define OUTPORT 57120 //EDIT OSC output port (only used at startup for announcement)
const char *espname = "f0dmx";
Ticker ticker;
IPAddress outIp;
WiFiUDP Udp;
void setup() {
delay(10);
pinMode(CONFIG_PIN, INPUT);
pinMode(LED_BUILTIN, OUTPUT);
ticker.attach(0.6, tick);
WiFi.hostname(espname);
wifi_station_set_hostname(espname);
WiFiManager wifiManager;
wifiManager.setAPCallback(configModeCallback);
if (!wifiManager.autoConnect(espname)) {
ESP.reset();
delay(1000);
}
MDNS.begin(espname); //make .local work
outIp = WiFi.localIP();
Udp.begin(PORT);
OSCMessage msg("/ready"); //announcement
msg.add(espname);
msg.add(int(outIp[0]));
msg.add(int(outIp[1]));
msg.add(int(outIp[2]));
msg.add(int(outIp[3]));
msg.add(PORT);
outIp[3] = 255; //use broadcast IP x.x.x.255
Udp.beginPacket(outIp, OUTPORT);
msg.send(Udp);
Udp.endPacket();
yield();
msg.empty();
ESP8266DMX.startOutput();
ticker.detach();
digitalWrite(LED_BUILTIN, LOW); //debug
}
void tick() {
int state = digitalRead(LED_BUILTIN);
digitalWrite(LED_BUILTIN, !state); //debug
}
void configModeCallback(WiFiManager *myWiFiManager) {
ticker.attach(0.15, tick);
}
void dmx(OSCMessage &msg) {
int chan, value;
for (byte i = 0; i < msg.size(); i = i + 2) {
chan = getIntCast(msg, i);
value = getIntCast(msg, i + 1);
ESP8266DMX.setSlot(chan, value);
}
}
int getIntCast(OSCMessage &msg, int index) { //support for both integers and floats
if (msg.isInt(index)) {
return msg.getInt(index);
}
return int(msg.getFloat(index));
}
void start(OSCMessage &msg) {
ESP8266DMX.startOutput();
}
void stop(OSCMessage &msg) {
ESP8266DMX.stop();
}
void loop() {
OSCMessage oscMsg;
int packetSize = Udp.parsePacket();
if (packetSize) {
while (packetSize--) {
oscMsg.fill(Udp.read());
}
if (!oscMsg.hasError()) {
oscMsg.dispatch("/dmx", dmx);
oscMsg.dispatch("/start", start);
oscMsg.dispatch("/stop", stop);
tick();
}
}
//--wifi
if (digitalRead(CONFIG_PIN) == LOW) { //reset pin
WiFiManager wifiManager;
wifiManager.resetSettings();
wifiManager.setAPCallback(configModeCallback);
wifiManager.autoConnect(espname);
ticker.detach();
digitalWrite(LED_BUILTIN, LOW); //debug
}
}
Example of how to send OSC from SuperCollider to the f0dmx box.
//make sure you are connected to the same WiFi network as f0dmx
n= NetAddr("f0dmx.local", 19998); //the IP and port of the f0dmx box
n.sendMsg(\dmx, 9, 255); //dmx channel 9, value 255
n.sendMsg(\dmx, 9, 0);
n.sendMsg(\dmx, 7, 100); //dmx channel 7, value 100
n.sendMsg(\dmx, 7, 0);
n.sendMsg(\stop); //usually not needed
n.sendMsg(\start);
Updates:
180620: cast floats to integers (getIntCast), increased electrolytic cap value from 100 to 220uF
181212: simplified WiFi setup with the WiFiManager library
+2 years ago I put up a simple example of how to use firmata with Arduino and SuperCollider. See /f0blog/supercollider-firmata/. That code still works but it only shows how to read a single analogue input on the Arduino.
Here is how one can read both A0 and A1 and map those to synth parameters in SuperCollider...
//how to read pins A0 and A1 with SCFirmata...
//tested with Arduino1.8.0 and SC3.8.0
//first in Arduino IDE:
// * select File / Examples / Firmata / StandardFirmata
// * upload this example to an Arduino
//then in SC install the SCFirmata classes
// * download zip file https://github.com/blacksound/SCFirmata
// * extract files and put them in your SC application support directory
// * recompile SC
SerialPort.devices;
d= SerialPort.devices[0]; // or d= "/dev/tty.usbserial-A1001NeZ" - edit number (or string) to match your Arduino
f= FirmataDevice(d);//if it works it should post 'Protocol version: 2.5' after a few seconds
s.boot
(
Ndef(\snd, {|freq1= 400, freq2= 500, amp= 0.5| SinOsc.ar([freq1, freq2].lag(0.08), 0, amp.lag(0.08)).tanh}).play;
f.reportAnalogPin(0, true); //start reading A0
f.reportAnalogPin(1, true); //start reading A1
f.analogPinAction= {|num, val|
[num, val].postln;
switch(num,
0, {
Ndef(\snd).set(\freq1, val.linexp(0, 1023, 400, 800)); //A0 mapped to freq1
},
1, {
Ndef(\snd).set(\freq2, val.linexp(0, 1023, 400, 800)); //A1 mapped to freq2
}
);
};
)
(
Ndef(\snd).stop;
f.reportAnalogPin(0, false); //stop reading A0
f.reportAnalogPin(1, false); //stop reading A1
f.end;
f.close;
)
And to read all six analogue inputs (A0-A5) one can do...
SerialPort.devices;
d= SerialPort.devices[0]; // or d= "/dev/tty.usbserial-A1001NeZ" - edit number (or string) to match your Arduino
f= FirmataDevice(d);//if it works it should post 'Protocol version: 2.5' after a few seconds
s.boot
~numberOfAna= 6; //number of analogue inputs (here A0-A5)
(
var freqsArr= 0!~numberOfAna;
Ndef(\snd2, {|amp= 0.5| Splay.ar(SinOsc.ar(\freqs.kr(freqsArr, 0.05), 0, amp.lag(0.08)).tanh)}).play;
~numberOfAna.do{|i|
f.reportAnalogPin(i, true); //start reading A0-Anum
};
f.analogPinAction= {|num, val|
[num, val].postln;
freqsArr.put(num, val);
Ndef(\snd2).setn(\freqs, freqsArr);
};
)
(
Ndef(\snd2).stop;
~numberOfAna.do{|i|
f.reportAnalogPin(i, false); //stop reading A0-Anum
};
f.end;
f.close;
)